ASIC3, a sensor of acidic and primary inflammatory pain.
نویسندگان
چکیده
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular acidosis that are expressed in both central and peripheral nervous systems. Although peripheral ASICs seem to be natural sensors of acidic pain (e.g., in inflammation, ischaemia, lesions or tumours), a direct demonstration is still lacking. We show that approximately 60% of rat cutaneous sensory neurons express ASIC3-like currents. Native as well as recombinant ASIC3 respond synergistically to three different inflammatory signals that are slight acidifications (approximately pH 7.0), hypertonicity and arachidonic acid (AA). Moderate pH, alone or in combination with hypertonicity and AA, increases nociceptors excitability and produces pain suppressed by the toxin APETx2, a specific blocker of ASIC3. Both APETx2 and the in vivo knockdown of ASIC3 with a specific siRNA also have potent analgesic effects against primary inflammation-induced hyperalgesia in rat. Peripheral ASIC3 channels are thus essential sensors of acidic pain and integrators of molecular signals produced during inflammation where they contribute to primary hyperalgesia.
منابع مشابه
Structural elements for the generation of sustained currents by the acid pain sensor ASIC3.
ASIC3 is an acid-sensing ion channel expressed in sensory neurons, where it participates in acidic and inflammatory pain. In addition to the "classical" transient current, ASIC3 generates a sustained current essential for pain perception. Using chimeras between the ASIC3 and ASIC1a channels we show that the first transmembrane domain (TM1), combined with the N-terminal domain, is the key struct...
متن کاملASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain
BACKGROUND Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that...
متن کاملA Nonproton Ligand Sensor in the Acid-Sensing Ion Channel
Acid-sensing ion channels (ASICs) have long been considered as extracellular proton (H(+))-gated cation channels, and peripheral ASIC3 channels seem to be a natural sensor of acidic pain. Here, we report the identification of a nonproton sensor on ASIC3. We show first that 2-guanidine-4-methylquinazoline (GMQ) causes persistent ASIC3 channel activation at the normal pH. Using GMQ as a probe and...
متن کاملNon-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.
Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 c...
متن کاملSerotonin facilitates peripheral pain sensitivity in a manner that depends on the nonproton ligand sensing domain of ASIC3 channel.
Tissue acidosis and inflammatory mediators play critical roles in inflammatory pain. Extracellular acidosis activates acid-sensing ion channels (ASICs), which have emerged as key sensors for extracellular protons in the central and peripheral nervous systems and play key roles in pain sensation and transmission. Additionally, inflammatory mediators, such as serotonin (5-HT), are known to enhanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 27 22 شماره
صفحات -
تاریخ انتشار 2008